commit 10dc813e1ad0c6f1e0dbe28c3745883c41a8d006
parent 3d6a4646aaa9fe64e5f9bf5e151106525eea6a7f
Author: oscarbenedito <>
Date:   Mon, 24 Feb 2020 00:40:04 +0100

Temporary fix to overflow height modification

Massets/css/style.scss | 6+++++-
Mcontent/blog/2020-02-23-sharing-a-secret.pdc | 6+++---
Mcontent/jsweblabels.html | 2+-
3 files changed, 9 insertions(+), 5 deletions(-)

diff --git a/assets/css/style.scss b/assets/css/style.scss @@ -687,6 +687,10 @@ article { /* Others -------------------------------------------------- */ -.x-overflow-container { +.table-container { overflow-x: auto; } +.mathjax-container { + overflow-x: auto; + margin-top: -21.5px; +} diff --git a/content/blog/2020-02-23-sharing-a-secret.pdc b/content/blog/2020-02-23-sharing-a-secret.pdc @@ -19,7 +19,7 @@ Shamir's method is based on the fact that given $n + 1$ pairs $(x_i, y_i)$ such Let's put it into practice. Given a secret $S$, to be shared with $n$ parties in a way that any $k$ parties can retrieve it, we'll build the following polynomial: -<div class="x-overflow-container"> +<div class="mathjax-container"> $$p(x) = S + a_1 x + a_2 x^2 + ... + a_{k-1} x^{k-1},$$ </div> @@ -31,13 +31,13 @@ If we want to recover the secret from $k$ shares, we can interpolate the $k$ poi [^proof]: Let's quickly proof that the $p$ defined in Lagrange's form ($\bar{p}$ from now on) is the same as the previously defined $p$. $\bar{p}$ is clearly a polynomial of degree (at most) $k-1$, since it is the sum of polynomials of degree $k-1$, so we only need to proof that it interpolates the points given (we'll asume that the fact that there is only one polynomial of degree at most $k-1$ that interpolates $k$ points is true). That is easy to proof since $i \neq j \implies l_i(x_j) = 0$ and $l_i(x_i) = 1$, therefore having $\bar{p}(x_i) = p(x_i) l_i(x_i) = p(x_i)$. -<div class="x-overflow-container"> +<div class="mathjax-container"> $$p(x) = \sum_{i=1}^{k} p(x_i) l_i(x),$$ </div> where -<div class="x-overflow-container"> +<div class="mathjax-container"> $$l_i(x) = \prod_{\begin{smallmatrix}1\leq m\leq k\\ m\neq i\end{smallmatrix}} \frac{x-x_m}{x_i-x_m}.$$ </div> diff --git a/content/jsweblabels.html b/content/jsweblabels.html @@ -6,7 +6,7 @@ type: page <p>You can find more information on free/libre JavaScript <a href="">here</a>.</p> -<div class="x-overflow-container"> +<div class="table-container"> <table id="jslicense-labels1" class="table is-bordered" style="margin:auto"> <thead> <tr>